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a b s t r a c t

We introduce a newmeasure for capital market efficiency. The measure takes into consid-
eration the correlation structure of the returns (long-term and short-term memory) and
local herding behavior (fractal dimension). The efficiency measure is taken as a distance
from an ideal efficient market situation. The proposed methodology is applied to a portfo-
lio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From
a geographical point of view, the more efficient markets are dominated by the European
stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania.
The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A concept of capitalmarket efficiency is a central notion in financialmarkets theory [1,2]. This notion is generally used for
an ideal image of the capital market enabling us to process relevant information to the fundamental price generation. If the
relevant information to the fundamental price generation is completely processed by the capital market price mechanism,
then such a capital market is said to be efficient. Thus the capital market efficiency accentuates the informational efficiency
of capital markets. A notion of the efficient capital market represents such a capital market where prices on traded
securities, e.g. stocks, bonds, or property, already reflect all available information and that investors are completely rational.
Consequently, the notion of the efficient capital market represents a fair game pattern. No investor can have an advantage
in predicting a return on an asset price, since no one has access to information not already available to everyone. It means
that investors in the efficient capital market cannot expect to achieve abnormal returns systematically. In other words, the
capital market is efficient if the fluctuations of returns are unpredictable [1–3].

Paradoxically, an achievement of the ideal efficient capital market, enabling efficient allocation of investments, brings
about no activity of investors and no activity of speculators. Because real life experiences with capital markets have shown
that there are investors who indeed have been beating the capital markets in the long-term, discrepancies from the above
mentioned ideal state are existent and thus worth analyzing.

Testing the efficiency of various capital markets in different regions is a popular topic in financial journals (e.g. [4–8]).
However, the hypothesis of market efficiency is standardly either rejected or not andmarkets are ranked quite infrequently.
Moreover, the researchers majorly focus on a single method and comment on the results. And even more, the whole idea of
testing or measuring capital market efficiency has been dealing with the joint-hypothesis problem (i.e. when we reject the
efficiency of a specific market, it might be caused by a wrong assumption of themarket’s behavior) since its beginnings. This
issuewas also touched on by Fama himself [2]. In this paper, we try to bypass the problem by defining the efficientmarket as
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a martingale. We then analyze the fractal dimension, and long-range and short-range dependence to describe and measure
the efficiency of specific markets.

The Hurst exponent and a presence of long-term memory have been widely analyzed in recent years—in stock indices
[9,10], interest rates [11], bonds [12], exchange rates [13] and others. The results vary depending on asset type and on
geographical situation as well. Statistically significant long-range dependence was detected in some individual NYSE-listed
stocks [14]. Even though the series of developedmarkets usually possess only short or nomemory, emergingmarkets exhibit
a different behavior [15,16]. Looking at a different frequency, a significant long memory was found for weekly returns of a
large number of Greek stocks [17]. Cajueiro and Tabak [18] rank the markets according to their efficiency and suggest that
the Hong Kong stock exchange is the most efficient one followed by Chinese A type shares and Singapore, and finally by
Chinese B type shares, which indicates that liquidity and capital restrictions should be taken into consideration in efficiency
testing and mainly interpretation.

We use the Hurst exponent H and the fractal dimension D to construct a new measure of market efficiency based on a
deviation from the ideal state (the efficient market) from both local and global perspectives. If the results based on different
measures vary, we can further distinguish between local (herding) and global (structure of correlations) effects. We use the
fact that the measures are bounded and thus can be used to construct an informative norm representing the said deviation
from the ideal state. The measure is estimated for 41 stock indices at different stages of development from the beginning of
2000 till the end of August 2011, i.e. the data set includes the DotCom bubble and its bursting as well as the current Global
Financial Crisis.

The paper is structured as follows. In Section 2, we define the efficient capital market. Section 3 describes relationships
between efficiency and themeasures we use. In Section 4, we describe themethods used for the fractal dimension and Hurst
exponent estimation. Section 5 covers the results and discusses the implications. Section 6 concludes. Themain value of this
paper lies in the fact that the proposed methodology bypasses the standard caveats of efficiency testing by building on the
martingale definition of efficiency, using different methods and merging them into the efficiency measure. Such a rather
bold path leads to very interesting and also meaningful results.

2. Capital market efficiency

We use a triple (Ω, T , P) for expressing a probability space and the expression E[X |T ] for the conditional expectations.
Let {ω ∈ Ω} be a set of elementary market situations. Let T be some σ -algebra of the subsets of Ω, P is a probability
measure on T and Ω is an information set. This structure gives us all the machinery for static situations involving ran-
domness. For dynamic situations, involving randomness over time, a sequence of σ -algebras {Tt , t ≥ 0} needs to be taken
into consideration. Inclusion Tt ⊂ Tt+1 for all t represents the information arriving in time t . Suppose all σ -algebras to
be complete. Thus T0 represents initial information. On the other hand, a situation that all is known is represented by the
expression T∞ = limt→∞ Tt . Such a family {Tt≥0} is called a filtration; a probability space endowed with such a filtration,
(Ω, T , {Tt}, P), is also called a stochastic basis.

Let C = (Ω, T , {Tt}, P) be a capital market with distinguished flows {Tt≥0} of σ -algebras filtered probability space. We
also call {Tt≥0} an information flow, and an expression {St}t≥0 ∈ M is a security price process. The efficient market is then
defined as follows:

A capital market C = (Ω, T , {Tt}, P) is called efficient if there exists P such that each security price sequence S = {St}t≥0 is
a P-martingale, i.e. the variables are Tt-measurable and

EP [|St |] < ∞, EP [St+1|Tt ] = St , t ≥ 0. (1)

If a sequence {ξt}t≥1 is the sequence of independent random variables such that EP [|ξt |] < ∞, EP [ξt ] = 0 for t ≥ 1,
T

ξ
t = σ(ξ1, . . . , ξt), T

ξ

0 = {∅, Ω}, and T
ξ
t ⊆ Tt then, evidently, the security price sequence S = {St}t≥0, where St = ξ1 +

· · · + ξt for t ≥ 1 and S0 = 0, is a martingale with respect to T ξ
= {T

ξ
t }t≥0, and

EP [St+1|Tt ] = St + EP [ξt+1|Tt ] . (2)

If a sequence S = {St}t≥0 is a martingale with respect to the filtration {Tt≥0} and St = ξ1 +· · ·+ ξt for t ≥ 1 with S0 = 0,
then {ξt}t≥1 is a martingale difference, i.e. ξt is Tt-measurable, EP [|ξt |] < ∞ and EP [ξt |Tt−1] = 0.

Thus in words, the capital market efficiency is represented by the martingale property of the security price processes.
Note that this feature is primarily connected to uncorrelated returns of the price series.1 Compared to the random-walk-
based efficiency, the martingale is more general and does not assume the series to be locally stationary (homoskedastic),
which would be quite unrealistic for the financial time series. Nevertheless, the martingale assumption gives enough
information about the expected Hurst exponent and fractal dimension. Note that our information set Ω contains only the
prices of the analyzed indices so that we test and measure the weak form of the capital market efficiency.

1 Note that security price process S = {St }t≥0 can be taken either as a simple price or a logarithmic price process. In our application, we use the more
standard approach, i.e. the logarithmic prices.
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3. Relationship between efficient market, fractal dimension and long memory

Traditionally, time series of martingale fluctuations are described as being generated by the Gaussian noise (or the Brow-
nian motion for an integrated process) and space of many time series of such fluctuations to be generated by some mixing
mechanism of the Gaussian noise interspersed with Lévy jumps (or again as the Brownian motion interspersed with Lévy
flights when talking about the integrated processes). Describing a theoretical model of the efficient capital market with
Brownian motion, we asymptotically obtain a normal (Gaussian) distribution of returns and an empirical distribution of
returns will be asymptotically very close to the normal distribution. In a multidimensional theoretical model of the effi-
cient capital market with the multidimensional Brownian motion, we asymptotically obtain a multidimensional normal
distribution of returns and multidimensional empirical distribution of returns will be asymptotically very close to the mul-
tidimensional normal distribution. However, themartingale definition of the efficient capital market as outlined in Section 2
does not necessarily require Brownianmotion (practically any integrated process of serially uncorrelated and finite variance
increments suffices). Nevertheless, we shall see that in many cases, the efficient market leads to the Brownian motion.

A measure of roughness D of the n-dimensional sphere is called a fractal dimension. The fractal dimension D ∈ ⟨n, n+1)
for hyperplane Rn+1 is a local characteristic of the time series. Long-term memory in the time series of fluctuations on
the capital market is connected to the power law of autocorrelations. This effect is usually called the Hurst effect and is
measured by the Hurst exponentH [19]. Long-termmemory is a global characteristic of the series.Without imposing further
assumptions about the underlying process, D and H are independent. For self-affine processes, it holds that D + H = n + 1.
For a univariate case that means D + H = 2 [20]. In the context of the capital markets, such a relation implies that local
behavior (such as a herding behavior or fear) is reflected in the global characteristics (such as significant autocorrelations
or high volatility).

If we assume that the local behavior is at least partially projected into the global features of the market, then persistence
is connected to the low fractal dimension D ∈ (1, 1.5) and the higher fractal dimension D ∈ (1.5, 2) is connected to anti-
persistent processes. If the process is characterized by the Hurst exponent close to 0.5 and the fractal dimension close to 1.5,
it should have no correlation structure.

4. Methodology

4.1. Long-range dependence, Hurst exponent and market efficiency

Long-range dependence (or long-term memory) is a feature of time series’ autocorrelations. If the series is long-range
dependent, the autocorrelation function ρ(k) = E[(Xt − E[Xt ])(Xt−k − E[Xt ])]/E[(Xt − E[Xt ])

2
], where Xt is a stationary

process, decays asymptotically hyperbolically, i.e. ρ(k) ∝ k2H−2 for k → ∞. Therefore, the behavior of the series has in-
finite memory, i.e. the shocks in a very distant past may have a significant effect on today’s behavior. Such behavior is in
violation of the definition of an efficient market (see Section 2) because it allows for arbitrage as shown by Mandelbrot and
van Ness [21]. The relationship between long-term memory, predictability and potential efficiency has been discussed in
numerous studies [22–27] and in many cases, the less developed markets were characterized by signs of long-term mem-
ory. Moreover, the time-dependent Hurst exponent has been used several times to describe various phases of the financial
markets and its connection to the efficient markets [28,29].

A characteristic measure of long-range dependence is the Hurst exponentH , which ranges between 0 and 1. ForH = 0.5,
the series is considered serially uncorrelated or short-term correlated, whereas for H ≠ 0.5, we consider it long-range cor-
related. More specifically, H > 0.5 indicates persistence or positive long-term memory, which is usually interpreted in a
way that a positive increment of the series is more likely to be followed by another increment and vice versa. Inversely,
H < 0.5 indicates anti-persistence or negative long-termmemory which is connected with more frequent switching of the
increments and decrements than would be observed for a random process. Both types can be exploited to obtain abnormal
returns on themarket since the fluctuations are predictable [21]. However, it needs to be noted that for financial time series,
even an uncorrelated series can yield H ≠ 0.5 due to several reasons such as heteroskedasticity, short-term memory and
fat tails. The effects of these are discussed in various papers, e.g. [30–32].

In our analysis, we apply various methods to estimate the Hurst exponent H—detrended fluctuation analysis [33–35],
detrending moving average [36], and height–height correlation analysis (also known as the generalized Hurst exponent
approach) [25,37,38].

4.1.1. Detrended fluctuation analysis
Detrended fluctuation analysis (DFA) [33,34] is based on the scaling of variances of the detrended series. We split the se-

ries into boxes of length s and estimate a polynomial fit of the profileXt,s. The detrended series is constructed as Yt = Xt−Xt,s.
Fluctuations F 2

DFA(s), which are defined as an average of the mean squared error of the polynomial fit over all boxes with
length s, scale according to F 2

DFA(s) ∝ s2H [35]. Note that we use smin = 5 and smax = T/5.

4.1.2. Detrending moving average
Detrending moving average (DMA) [36] is based on a moving average filtering. For a window length λ, we construct a

centered moving average Xt for each possible point of Xt . Similarly to DFA, we define the fluctuation F 2
DMA(λ) as a mean
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squared error between Xt and Xt,λ, which scales as F 2
DMA(λ) ∝ λ2H . As we are using the centered moving average, we use

λmin = 3 and λmax = 21 with a step of 2.

4.1.3. Height–height correlation analysis
Height–height correlation analysis (HHCA) [38], also known as the generalized Hurst exponent approach (GHE) [25],

is based on the scaling of the height correlation function of series Xt with time resolution ν and t = ν, 2ν, . . . , ν⌊T/ν⌋

(where ⌊⌋ is a lower integer operator). The height correlation function of the second order for series Xt is defined as K2(τ ) =⌊T/ν⌋

τ=1 |Xt+τ − Xt |
2/⌊T/ν⌋ where τ ranges between ν = τmin, . . . , τmax. In our application, we use τmin = 1 and τmax varies

between 5 and 20. This way, we obtain more estimates of the Hurst exponent and take their average as our best estimate,
i.e. we apply a jackknife which is standardly done for this method [26].

4.2. Efficient market and fractal dimension

As already mentioned in the previous section, fractal dimension D is a measure of roughness on Rn+1 for n-dimensional
time series (the additional dimension in n + 1 represents time). For a random series, the fractal dimension D = 1.5. In the
realmarkets, short-term trends usually occur and are connected to so-called ‘‘bear’’ (decliningmarketwith a negativemood)
and ‘‘bull’’ (increasing market with a positive mood) markets. These short-term episodes on the market are not reflected
into its global characteristics since these would quickly vanish due to arbitrage potential. Nevertheless, the episodes cause
roughening of the series which is in turn reflected in the deviation of D from 1.5. If the market is characterized by ‘‘local
persistence’’, i.e. short-term trends, the fractal dimension should be below 1.5 as the surface of the series becomes smoother.
Conversely, if the market is dominated by ‘‘local anti-persistence’’, i.e. short-term bursts of volatility, the fractal dimension
should be higher than 1.5 as the surface of the series is more coarsened. Of course, these effects can both be present on the
market.

Fractal dimension is connected to the fractal nature of a geometric object and is connected to the Hausdorff dimen-
sion [39] and is usually estimated through such dimensions for a graphical object or texture [40]. However, we cannot
estimate the fractal dimension D this way for a univariate time series and it is needed to use an alternative estimators used
for time series—periodogram estimator [41], Genton estimator [42], Hall–Wood estimator [43] and wavelet-based estima-
tor [44,45]. A detailed description of the methods is given in [44] and references therein.

4.3. Capital market efficiency measure

For a construction of capital market efficiency measure EI , we use the fact that both fractal dimension D and Hurst ex-
ponent H are bounded. The Hurst exponent for stationary series is defined on interval ⟨0, 1) and the fractal dimension for
a univariate case is defined on ⟨1, 2). For each measure, the value for an efficient market lies in the center of its support,
i.e. H = 0.5 and D = 1.5. Various estimates of fractal dimension D̂ are obtained as defined earlier in the text. For the esti-
mated Hurst exponent Ĥ , we use estimates based DFA, DMA and HHCA but for DFA and HHCA, we also use the alternatives.
The DFA estimate is calculated for both linear and quadratic trend filtering. HHCA/GHE is then based on the definition of
both Barabasi et al. [38] and Di Matteo [9]. The DFA estimate is taken as an average of the two alternatives and the same
for HHCA. Such a procedure is chosen because each of the methods is better suited for different types of processes both
for the Hurst exponent and fractal dimension estimation [46,31,47,44]. It is needed to note that Hurst exponent estimators
are usually biased by a presence of short-term memory in the underlying process [30,32]. However, this is not an issue for
the proposed efficiency measure because when short-memory (which is of course a form of inefficiency as well) biases the
Hurst exponent estimate, it is in turn reflected in the efficiency measure. To further control for short-range dependence in
the analyzed series, we also include the first order sample autocorrelation ρ(1) into EI . Note that ρ(1) ranges between −1
(perfectly anti-correlated) and 1 (perfectly correlated) and thus has a range of 2 which needs to be controlled for. Therefore,
EI is based on 8 estimates (4 estimates of fractal dimension, 3 estimates of Hurst exponent and 1 estimate of the first order
autocorrelation). For our specific case, EI is defined as

EI =


8

i=1

(HDFA − 0.5)2 + (HDMA − 0.5)2 + (HHHCA − 0.5)2

+ (DP − 1.5)2 + (DW − 1.5)2 + (DG − 1.5)2 + (DHW − 1.5)2 + (ρ(1)/2)2
 1

2

, (3)

where HDFA, HDMA and HHHCA are estimated Hurst exponents based on DFA, DMA and HHCA/GHE, respectively, DP , DW , DG

and DHW are estimated fractal dimensions based on the periodogram method, wavelets, Genton method and Hall–Wood
method, respectively, and ρ(1) is the sample first order autocorrelation.
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Table 1
List of the analyzed indices.

Ticker Index Country

AEX Amsterdam Exchange Index The Netherlands
ASE Athens Stock Exchange General Index Greece
ATX Austrian Traded Index Austria
BEL20 Euronext Brussels Index Belgium
BSE Bombay Stock Exchange Index India
BUSP Bovespa Brasil Sao Paulo Stock Exchange Index Brazil
BUX Budapest Stock Exchange Index Hungary
CAC Euronext Paris Bourse Index France
CSE Chittagong Stock Exchange Index Sri Lanka
DAX Deutscher Aktien Index Germany
DJI Dow Jones Industrial Average Index USA
FTSE Financial Times Stock Exchange 100 Index UK
HEX OMX Helsinki Index Finland
HSI Hang Seng Index Hong-Kong
IBC Caracas Stock Exchange Index Venezuela
IGBM Madrid Stock Exchange General Index Spain
IGRA Peru Stock Market Index Peru
IPC Indice de Precios y Cotizaciones Mexico
IPSA Santiago Stock Exchange Index Chile
JKSE Jakarta Composite Index Indonesia
JSE Africa All Share Index RSA
KFX Copenhagen Stock Exchange Index Denmark
KLSE Bursa Malaysia Index Malaysia
KS11 KOSPI Composite Index South Korea
MERVAL Mercado de Valores Index Argentina
MIBTEL Borsa Italiana Index Italy
NASD NASDAQ Composite Index USA
NIKKEI NIKKEI 225 Index Japan
NYA NYSE Composite Index USA
PSE Philippine Stock Exchange Index Philippines
PX Prague Stock Exchange Index Czech Republic
SAX Slovakia Stock Exchange Index Slovakia
SET Stock Exchange of Thailand Index Thailand
SPX Standard & Poor’s 500 Index USA
SSEC Shanghai Composite Index China
SSMI Swiss Market Index Switzerland
STRAITS Straits Times Index Singapore
TA100 Tel Aviv 100 Index Israel
TSE Toronto Stock Exchange TSE 300 Index Canada
WIG20 Warsaw Stock Exchange WIG 20 Index Poland
XU100 Instanbul Stock Exchange National 100 Index Turkey

We can generalize EI for nmeasures so that

EI =

 n
i=1

 Mi − M∗

i

Ri

2

, (4)

where Mi is the ith measure of efficiency (Hurst exponents H , fractal dimensions D and the first order autocorrelation ρ(1)
in our case), Mi is an estimate of the ith measure,M∗

i is an expected value of the ith measure for the efficient market and Ri
is a range of the ith measure. As ranges of different measures may vary, we standardize them so that the range is equal to
one, implying a unit cube as a resulting space. For the efficient market, we have EI = 0, and for the least efficient market,
we have EI =

√
n
2 , where n is a number of measures taken into consideration. Therefore, the efficiency index is defined on a

unit n-dimensional cube with the efficient market in the center, i.e. EI = 0 for the efficient market.

5. Results and discussion

We analyze the efficiency of 41 stock market indices, which are described in Table 1. The data set covers indices from
the North and Latin America, Western Europe, Eastern Europe, Asia, Oceania and Africa and it has been obtained from the
dukascopy.compublic database. The analyzedperiod ranges from thebeginning of 2000 to the endof August 2011 (except for
the indiceswhichwere founded later than 2000). The period thus includes each of the years of relatively stable growth, years
of stable decrease after the DotCom bubble burst as well as the current crisis (crises). In Table 2, basic descriptive statistics of
the logarithmic close/close returns are mentioned. Apart from the basic statistics (average, minimum, maximum, standard
deviation, skewness and excess kurtosis), we show the KPSS statistics for the series. According to this test, all the series but
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Table 2
Descriptive statistics for the analyzed indices.

Index Mean Min Max SD Skewness Ex. kurtosis KPSS p-value

AEX −0.0003 −0.0959 0.1003 0.0157 −0.0183 6.1531 0.1084 >0.05
ASE −0.0006 −0.1021 0.1343 0.0169 −0.0697 5.0812 0.3531 >0.05
ATX 0.0002 −0.1025 0.1202 0.0150 −0.3410 8.2241 0.3141 >0.05
BEL20 −0.0001 −0.0832 0.0933 0.0135 0.0694 6.7098 0.1381 >0.05
BSE 0.0004 −0.1181 0.1599 0.0170 −0.1630 6.2487 0.1900 >0.05
BUSP 0.0004 −0.1210 0.1368 0.0193 −0.0641 4.5410 0.1229 >0.05
BUX 0.0004 −0.1265 0.1318 0.0169 −0.1105 6.3117 0.2860 >0.05
CAC −0.0002 −0.0947 0.1060 0.0154 0.0594 5.3189 0.0944 >0.05
CSE 0.0008 −0.1391 0.1770 0.0152 0.2208 25.7090 1.2088 <0.01
DAX −0.0001 −0.0887 0.1080 0.0159 0.0025 4.7729 0.1681 >0.05
DJI 0.0000 −0.0820 0.1051 0.0126 −0.0089 7.8817 0.0647 >0.05
FTSE −0.0001 −0.0927 0.0938 0.0129 −0.1309 6.4856 0.1222 >0.05
HEX −0.0003 −0.1441 0.1344 0.0193 −0.1933 5.2159 0.1886 >0.05
HIS 0.0001 −0.1770 0.1341 0.0166 −0.2283 12.5630 0.1306 >0.05
IBC 0.0008 −0.2066 0.1453 0.0155 −0.4151 25.8530 0.2665 >0.05
IGBM −0.0001 −0.1875 0.1840 0.0153 0.0833 20.5300 0.1272 >0.05
IGRA 0.0008 −0.1144 0.1282 0.0147 −0.3550 10.3010 0.3896 >0.05
IPC 0.0005 −0.0727 0.1044 0.0144 0.0515 4.3402 0.1295 >0.05
IPSA 0.0007 −0.0717 0.1180 0.0108 −0.0140 10.7400 0.1663 >0.05
JKSE 0.0006 −0.1095 0.0762 0.0150 −0.6570 6.1905 0.3397 >0.05
JSE 0.0006 −0.0758 0.0683 0.0135 −0.1786 3.2503 0.2009 >0.05
KFX 0.0002 −0.1172 0.0950 0.0137 −0.2594 5.7183 0.0939 >0.05
KLSE 0.0002 −0.1122 0.0537 0.0092 −1.1810 15.4970 0.1591 >0.05
KS11 0.0002 −0.1212 0.1128 0.0174 −0.4309 4.5849 0.1617 >0.05
MERVAL 0.0006 −0.1295 0.1612 0.0214 −0.1235 5.6617 0.1006 >0.05
MIBTEL 0.0002 −0.0771 0.0683 0.0108 −0.3979 5.7820 0.4301 >0.05
NASD −0.0002 −0.1029 0.1116 0.0175 −0.1624 3.9587 0.2958 >0.05
NIKKEI −0.0003 −0.1211 0.1324 0.0158 −0.3633 7.3242 0.1252 >0.05
NYA 0.0002 −0.1023 0.1153 0.0140 −0.4233 10.5210 0.1514 >0.05
PSE −0.0001 −0.1860 0.2929 0.0162 1.8252 67.2470 0.2770 >0.05
PX50 0.0003 −0.1619 0.1236 0.0154 −0.6011 15.4230 0.4121 >0.05
SAX 0.0007 −0.0882 0.0711 0.0120 −0.0481 6.5294 0.5215 >0.05
SET 0.0000 −0.2211 0.1058 0.0158 −1.8111 26.2170 0.2975 >0.05
SPX −0.0001 −0.0947 0.1096 0.0134 −0.1842 8.1808 0.0958 >0.05
SSEC 0.0002 −0.1200 0.0903 0.0168 −0.2784 4.7064 0.1461 >0.05
SSMI −0.0001 −0.0811 0.1079 0.0127 0.0331 6.2488 0.0918 >0.05
STRAITS 0.0000 −0.2685 0.1406 0.0137 −2.2597 56.9590 0.1989 >0.05
TA100 0.0003 −0.0734 0.0978 0.0141 −0.1535 3.2977 0.1157 >0.05
TSE 0.0001 −0.0979 0.0937 0.0122 −0.6630 8.9915 0.0782 >0.05
WIG20 0.0004 −0.0886 0.3322 0.0185 2.6452 52.0680 0.1909 >0.05
XU100 0.0004 −0.1334 0.1749 0.0230 0.0039 4.5896 0.1105 >0.05

Fig. 1. Efficiency index.

CSE (Sri Lanka index) are weakly stationary. We do not show the results for ADF and PP unit-root tests since they strongly
reject unit-root for all the indices with p-values practically equal to zero.

Let us now turn to the results. The results for efficiency index EI are summarized in Fig. 1. In the figure, the indices are
sorted so that the more to the left the index is, the more efficient it is. The most efficient market turns out to be the Japanese
NIKKEI and the least efficient is the Peruvian IGRA. The ‘‘Top 5’’ of the most efficient indices contains the Japanese NIKKEI,
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Fig. 2. Hurst exponent.

Fig. 3. Fractal dimension.

Danish KFX, Hungarian BUX, German DAX and Belgian BEL20. From the opposite side, the ‘‘Bottom 5’’ includes Venezuelan
IBC, Malaysian KLSE, Slovakian SAX, CSE of Sri Lanka and the already mentioned Peruvian IGRA. These are the results which
might be labeled as relatively expected. However, when we look at the other indices, we can find more interesting results.
First, the efficiency of the indices is geographically-dependent. For the more efficient half of the analyzedmarkets, there are
13 European, 5 Asian, 2 North American and 1 African stock exchanges. The less efficient half contains 6 Latin American, 4
Asian, 4 European, 3North American and 3Oceanian. Therefore, themore efficientmarkets are dominated by European stock
exchanges while the less efficient markets are dominated by Latin America, Asia and Oceania. Probably the most interesting
are the performances of the US stock exchanges, which all score around the middle of the ranking. However, this should not
be very surprising as the analyzed period contains both the DotCom bubble and the Global Financial Crisis of the late 2000s,
which most severely hit the US markets and can be evidently taken as a source of inefficiency. Out of the four analyzed US
indices, the most efficient turns out to be DJI and the least efficient is NASDAQ. Note that the most efficient US index, i.e. DJI,
is less efficient than the biggest EU index—German DAX. The British FTSE, which can be considered as tightly connected to
the US indices, ranks very similarly to the US indices, in the middle of the ranking. To be able to comment on the sources of
inefficiency, we now focus on the separate measures.

Focusing on the Hurst exponent estimates, we observe that the deviations from the ideal H = 0.5 are not that severe for
the majority of the indices and generally range between 0.45 and 0.55. In Fig. 2, we show the average values of the Hurst
exponent estimates. Interestingly, we find that the majority of the most developed markets (but not necessarily the most
efficient as shown above) are below the H = 0.5 level, which is in agreement with the results of Di Matteo et al. [26].
Generally, we don’t observe strong global correlation structure in the processes. This is, however, not a big surprise as the
existence of strong global auto-correlations would lead to arbitrage opportunities, which are not likely to last for long taking
into account the computerized trading in the current markets. The indices with the highest Hurst exponents are the same
as the least efficient markets. From these, the Peruvian IGRA shows higher persistence than the non-stationary CSE of Sri
Lanka. Results for the first order autocorrelation are very similar for all indices and close to zero so that we do not present
them.

The results for fractal dimension D (Fig. 3) tell a more informative story. We observe that the majority of the indices are
characterized by a fractal dimension below 1.5, which indicates local persistence. For several indices, we observe the oppo-
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Fig. 4. Relationship between Hurst exponent and fractal dimension.

Fig. 5. Separation between local and global inefficiencies from the most efficient market on the left to the least efficient market on the right.

site. These are the British FTSE, Polish WIG20, JSE of the Republic of South Africa and DJI of the USA. Again the least efficient
markets show the biggest deviation from D = 1.5 and fall below 1.4. These markets thus experience relatively strong short-
term trends and are at least partially predictable in the short term. Such a correlation structure even translates into global
perspective as themarketswith the lowest fractal dimension are also themarketswith the highest Hurst exponent. The gen-
eral relationship between H and D for the analyzed indices is illustrated in Fig. 4. We observe that even though D and H are
not independent, the relationship is not exactly of the formD = 2−H of self-affine processes, yet it is very close to it. Specif-
ically, the estimated relationship isD = 1.94 − 0.95H with R2

= 0.66 which implies that fractal dimensions D are paired
with lower Hurst exponents H than for the self-affine processes. This is exactly in agreement with an economic interpreta-
tion that the local herding and crowd behavior are short-lasting and are thus not reflected in the global measure of the Hurst
exponentH perfectly but only partially. Such a result obviouslymakes sense in the stockmarkets where such a strong global
dependence would lead to profitable opportunities which would vanish due to the interaction between supply and demand
in the market. Nonetheless, the deviations of D and H from their efficient market values for the least efficient markets show
that not only the profit opportunities are important for investors but also an institutional framework such as legal and regu-
lation issues as well as liquidity issues. Otherwise, the profit opportunities even for the least efficient markets would vanish
quickly.

To further illustrate the different effects of local and global inefficiencies into the total EI measure, we present Fig. 5.
We can see that for the majority of indices, the local inefficiencies (deviation of the fractal dimension from 1.5) dominate
the global inefficiencies (short-term and long-term memory). Interestingly for the least efficient markets, the dominance
is the most evident. There are two exceptions for which the global inefficiencies dominate and these are Israeli TA100 and
Austrian ATX. For the more efficient markets, the proportion of local inefficiencies is around 40% and for the less efficient
markets, it is around 80% of the total.

6. Conclusions

Wehave introduced a novel approach tomeasuring capitalmarket efficiency.With a use of boundedmeasures of dynamic
systems connected to a standardmartingale definition of capital market efficiency, we constructed a vector containing long-
termmemory, short-termmemory and fractal dimensionmeasures. The efficiency index EI is calculated as a simple norm of
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this vector from its ideal efficient case. Therefore, the distance of a specificmarket situation froma center of ann-dimensional
cube is taken as ameasure of efficiency. The further themarket is from the ideal state, the less efficient it is. Such a procedure
can be easily generalized to more bounded efficiency quantities.

Applying the methodology on a set of 41 stock indices in the period between 2000 and 2011, we found that the Japanese
NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by
European stock indices and the less efficient markets cover mainly the Latin America, Asia and Oceania. More specifically,
the least efficient markets are Venezuelan IBC, Malaysian KLSE, Slovakian SAX, CSE of Sri Lanka and Peruvian IGRA (the
most inefficient stock market in the analyzed set). We also found that the local characteristics of the series (crowd and
herding behavior) partially translate into the global characteristics (correlation structure). Moreover, the local inefficiencies
in general dominate the total inefficiency for the strong majority of the indices.
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